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A two-dimensional air intake in a sonic stream 

By L. E. FRAENKEL 
Aeronautics Department, Imperial College, London 

(Received 20 &larch 1958) 

SUMMARY 
In this paper transonic small-disturbance theory is applied to 

a simplified model of the flow near the front of a ducted body. 
The body is assumed to consist simply of two parallel flat plates 
which extend from the inlet station to infinity downstream. The 
velocity far upstream is sonic, and the velocity far downstream 
in the duct, which is assumed to be known, is slightly subsonic. 
Air is therefore ‘ spilled ’ around the intake edges. An analytic 
solution is found for the resulting flow field up to the ‘limiting 
Mach wave ’, and asymptotic solutions are found for the supersonic 
flow and for the shock wave far from, and near, the intake edges, 
The pressure distribution along the outside walls is then known 
at both ends, and its computation is completed by an empirical 
procedure. Distributions of pressure along the centre-line and 
along the inside and outside walls are shown. These results may 
be used to compute the drag of sharp-edged intakes with a very 
small frontal area. 

1. INTRODUCTION 
Under most flight conditions, the intakes of high-speed aircraft ‘ spill ’ 

air : that is, the mass-flow requirement of the engine is such that the entering 
stream-tube of air has a cross-sectional area, far upstream, which is smaller 
than the area of the hole at the front of the body. As a result, air is diverted 
around the intake edge, and at high subsonic and at all supersonic flight 
speeds the flow field is of mixed type (see figure 1). In  the subsonic case 
there are regions of supersonic flow near the edge and, possibly, further 
back along the external wall of the intake. In the supersonic case there is 
a subsonic region which is bounded by the bow shock wave, by a sonic 
surface from this shock to the intake edge, and by the walls of the duct. 
As far as the external flow is concerned, the outer wall of the intake acts 
somewhat like the upper surface of an aerofoil, increasing spillage corre- 
sponding roughly to increasing incidence. These mixed intake flows have 
been the subject of considerable experimental work, and various empirical 
theories have been developed to predict the effect of spillage on the drag 
of aircraft, but (as far as the writer is aware) nothing approaching a 
theoretical description of the flow field has been developed. 

In the present paper we study the simplest possible example of such 
a flow. The intake is assumed to be two-dimensional and to consist simply 
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of two parallel, semi-infinite, flat plates. Alternatively, the upper half of 
this configuration may be interpreted as a simplified model of one of the 
side intakes found on some aircraft. The final velocity in the duct (which 
in practice is known from the air mass flow of the engine) is assumed to 
be only slightly less than that in the free stream, so that perturbations from 
a uniform stream are small, except in the neighbourhood of the intake edge. 
If the free-stream Mach number is near one, transonic small-disturbance 
theory may then be applied, and the central problem, in which the free 
stream is sonic, is considered here. 

\ \  (a) SUBSONIC 

- STREAMLINE (b) SUPERSONIC 
----- SONIC LINE 

- SHOCK WAVE 

Figure 1. 

It is usual in intake work to use a definition of drag which for plane flow 
becomes 

where Po denotes the pressure in the free stream, and the integral is taken 
over the entire length of the dividing streamline, ASEB in figure 1. This 
definition is consistent with the usual definition of engine thrust. It is 
natural to consider the drag as the sum of two parts: (i) the ‘pre-entry 
drag ’, which is the contribution of the upstream part, AS, of the dividing 
streamline, and can be calculated from the known change in momentum 
and pressure of the internal flow; and (ii) the ‘ cowl drag ’, which in the 
case of a flat-plate intake is simply the force on the edge E. In incompressible 
flow theory these two drags precisely cancel each other, as might be expected, 
regardless of whether exact or small-disturbance theory is used. In  the 
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present transonic problem, however, the singularity in velocity at the edge 
is rather weak, and the edge force is found to be zero. Both in incompressible 
and in transonic flow, the edge flow has, of course, the same character as 
that at the leading edge of a lifting flat plate, for which the transonic solution 
has been found by Guderley (1954). Hence the result of zero edge force, 
which was not discussed by Guderley, applies to that problem also. 

Some further information about cowl drag can also be obtained from 
the present model. Consider a wedge intake (that is, a two-dimensional 
intake of the type shown in figure 1 )  in a sonic stream. For moderate wedge 
angles the flow up to the ' limiting Mach wave ' (figure 2 ( a ) )  is the same 
as that past a flat-plate intake. (The significance of the limiting Mach 
wave will become clear from what follows.) Further, if the wedge angle 
is of even smaller order than the slope of the dividing streamline ahead 
of the intake, then the dominant part of the pressure acting on the wedge 
face is that on the outer wall of the flat-plate intake. Hence for such 
slender-wedge intakes a first approximation to the (negative) cowl drag can 
be found from the present solution. 

2. THE EQUATIONS OF TRANSONIC FLOW 

Let X ,  Y be Cartesian coordinates such that a free stream of near-sonic 
velocity U, and of Mach number M, Aows in the direction of increasing X. 
Let the velocity at a point in the field be ( U,+ U, U', V,  V'). The fluid 
is assumed to be a perfect gas whose specific-heat ratio is y. Then for 
small disturbances the equations of transonic flow may be written 

where subscripts denote partial derivatives, and where we have adopted 
Spreiter's (1954) version of these equations. In order to work with 
variables whose magnitude is 0(1), and to express the equations in 
canonical form, we introduce a small parameter 6, such that V' - 0 ( 6 ) ,  
and a length L, representative of the lateral extent of the field, and make 
the transformation 

x = ~(6ry3~,  

u =  (1-~y-i+p/3r-i /3~ ( ,y),  

Y = Ly, 

V'= G V ( X , Y ) .  0 

Then equations (2.1) become 

- uu, + V U  = 0, 

U y - V ,  = 0, 
with the boundary condition 

U + ( ( I M ~ - ~ ) ( ~ I ' ) - ~ J ~  = K, v+O,  as x,y+ oc). 

Here K is the transonic similarity parameter. 



632 L. E. Fraenke2 

If the roles of the independent and dependent variables are now 
interchanged, equations (2.3) become 

x,-uy, = 0, 
X,--y, = 0, 

Xutl - ux,v = 0. 

so that the Legendre contact potential, x = j (x du + y  d ~ ) ,  satisfies the 
Tricomi equation 

The  characteristic curves of this equation are v = $u3i2 + constant, (u  > 0) : 
hence we introduce the variables 1; = $u3I2 in the hyperbolic half-plane, 
and w = -u, z = $w3j2 in the elliptic half-plane. Then the equation 
becomes 

(2.4 1 

Two types of elementary solution of this equation, and the relations between 
them, are discussed in Appendix I. 

To the lowest order, the stream function is Y = . f p o  U, dI', so that 
y (= x,) may be taken constant on streamlines. The  variable y also satisfies 
the Tricomi equation. 

3. SOLUTION OF THE INTAKE PROBLEM UP TO THE LIMITING MACH WAVE 

Figure 2 shows qualitatively the physical and hodograph planes of the 
present problem. The  origin of coordinates is taken at the intake edge, 
and the length L in (2.2) is taken as half the distance between the two 
flat plates. The  final velocity in the duct being U,, we define 6 by 

By continuity, the overall change in width of the entering streamtube is 
then O(S4/3), and this occurs essentially over an S-length of O(6l13), so 
that the slope of the dividing streamline is O(6). 

The  physical and hodograph fields may be described as follows. The 
origin in the physical plane maps to infinity in the hodograph plane, and 
vice versa. The  most important streamline is the dividing streamline, 
y = 0. As this approaches the stagnation point, S, it has positive slope 
(u  > 0) and the velocity is reduced (w > 0). At S (x = 0, y = 0, w = co, 
u = 0 on the approximate theory) the dividing streamline branches ; one 
part, y = 0 - , running along the inner wall SI, while the other, y = 0 + , 
expands at infinite velocity about the edge E. I n  fact it overexpands, 
as do all the external streamlines, and ultimately attains negative slope 
(el < 0). Recompression and the return to zero slope occur first through 
a shock, and then continuously. The  shock corresponds to a jump in 
position in the hodograph plane, along the appropriate shock polar, and the 
subsequent flow maps on to a second sheet of the hodograph, which is here 
shown superposed on the first. 



A two-dimensional air intake in a sonic stream 633 
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0 

Y = Yz - 

y =  o* 

S y =o-  
y =  0 

Y C  Y ,  I 0 

L y = - 1  

( 0 )  PHYSICAL PLANE 

V 

1 y = o /  

Y t Y 2  I /- \ 

( b )  HODOGRAPH PLANE 

Figure 2. 

The central streamline of the intake, y = - 1, proceeds from 0 to I 
at zero slope. The internal flow is contained between y = 0, y = 0-, 
and y = - 1 ; the external flow between y = 0, y = 0 +, and the shock. 
The limiting Mach wave is the last of the expansion family emanating from 
the edge to meet the sonic line; hence disturbances downstream of this 
line do not affect the subsonic field. It maps on to zi = 5. 

F.M. 2 s  
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In this section we consider only the flow up to the limiting Mach wave, 
This is essentially a boundary value 

The solution is constructed in two parts 

(i) The potential x1 is to represent the far field of the physical plane, 

that is, the problem in W ( v  - 1;) 
problem of the Tricomi type. 
as follows (x = xl+xz). 

that is, the flow near 0. 

0. 

We require: 
y1 = xlv+ co as u,v+O, 1 

yl+O as u,v+ co, 
y l = O  on v = O ,  w > O ,  

y1 finite on v = 1;, v > 0, 

( 3 4  i 
and a one-to-one mapping from the hodograph to the physical plane. 
This ' free stream singularity ' for any symmetrical body has been found by 
Frank1 (1947) and Guderley (1948). I t  is one of the similarity solutions 
x = t;-mfn(tc), where tc = vz/l;z (Appendix I). I n  the present case m = 9, 
and the fn(tc), which is a hypergeometric function, reduces to elementary 
form. In  fact 

(3.3 a) 

sinh(4 sinh-ld(tc- 1)) 
= -p2t; -z/3 , (v 3 0, tc z l), (3.3c) 

d ( a - 1 )  
where p is a constant to  be determined in any particular problem. Although 
it is irrelevant at this stage, we also note that 

where sin-I 2/( 1 - z) varies from 0 to z- as v varies from t; to - 5. 
T o  formulate precisely the problem for x2, we observe that x1 gives 

velocities near the edge l3 which are altogether too large, and must be 
removed by xz. Indeed if x1 were to be the dominant term of the complete 
solution near E, this would result in an infinite drag, as will be shown in $6. 

(ii) The potential x2 is introduced to satisfy the boundary conditions 
on the body: 

y z = - 1  o n v = O ,  O < w < l ,  1 
= O  on v = O ,  

y z  is finite on v = 5. 
YZ+Yl 0 (Yl)  as w ,  v+ a, 

(3.4) 

Although p is as yet unknown, the second of these conditions does fix the 
order of magnitude of y z  at infinity in the hodograph plane. It is shown 
in Appendix I1 that (3.4) determine a unique boundary value problem in 
the sense of Tricomi. 
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We seek a solution of form 

where the I1,,-solution has been omitted because it leads, in general, to 
a singularity on the limiting Mach wave. (This step is justified rigorously 
by the fact that ( 3 . 5 )  will satisfy all the boundary conditions, and is therefore 
the unique solution.) f(h) is then determined from the integral equation 

= 0, x > 3, 
by means of the Mellin transform 

&p) = jm z”-’c$(z) dz 
0 

(see Appendix I for further details). 

where (ErdClyi 1954) 

The integral equation transforms to 

[ J l d P  + +I + L 3 ( P  + S>lA -P + 9 = - ( W P ,  

(3 .6)  
Hence, with - p  + 5 = q, we find after a little reduction that 

and 

(3.7 b) 

The only singularities of f(q) are simple poles at 

the poles of the I?-functions being removed by zeros of cos nq+ cos in. 
The evaluation of the contour integral in (3.7 b) is therefore straightforward : 
we close the contour with a large semi-circle in 9 q  < 0, whose contribution 
vanishes in the limit for all finite A, because of the strong convergence 
induced by the r-functions in (3.7a). Then 

q = t- ( 2 n + 1 ) ,  n = 0,  1 ,  2,  ..., 

(3.8 b) 

Now consider xz. If the substitution g“ = - (d3/.rr)f is made in 
equation (1.8), and the resulting integral is evaluated by contour integration, 
xz is given by various series of hypergeometric functions, However, we 
are primarily interested in x(w,  0), which gives the pressure distribution 
along the centre-line and the inner wall of our intake. Now on ZI = 0 

2 5 2  
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the hypergeometric functions take on simple values, or alternatively (3.5), 
(3.6) and (3.7a) may be used directly. 

so that, substituting from (3.6) and (3.7a) and inverting, we have 

In fact (3.5) may be written 

a,( - 4-  g, 0) = - [J1/3( - 4 )  +J-1/3( - 4 ) l f ( d ,  ( - 1 < g4 < - $1, 

&(X, 0 )  = - - -. tan 1, X 
1 1 C + i "  Q+li3 cos " Q  + cos g" 

cos "4 - cos $77 6 2m lc-iw (iX) 
cos Tfq + cos *rr xz(w, 0) = - - w3~12--1/2 tan 1 X 

2 w  cos "4 - cos &7 

The last integrand has simple poIes at 
q =  -t-(Zn+l), 2n+9, 2n+3, wheren= 0, 1, 2, ..., 

and for w 1 we may use large semi-circles in Wq 0, respectively. Then 
for w > 1, 

(3.10a) 

1 "  
x2(w,  0) = - 2 a, w-3n-2. " n=o 

a, = - - - -  +... for n-t co, 

a, = t d 3 ;  

where 
q n + 8 y y n + g )  1 3 
r (n+p)r (n+?)  12 4n2 

and for w < 1, 
1 "  

xz(w, 0) = - 2: (b,  + c, w + (I, w2)w3%, 
3 n s 4  

where 

+... for n-t 00, 
r ( n - i ) r ( n + + )  I 1 
r ( n + Q ) r ( n + l )  n 12n2 

b, = 
(3.10b) 

The asymptotic forms of the coefficients show that these series (which 
could also be written as generazized hypergeometric functions) converge 
rapidly except near w = 1, and that they diverge at w = 1. However, the 
singular part of the function is easily recognized and removed from the 
series. Equation (3.10a) may be written 

?Tw2x2(w, 01 = -iOg(i - w-3) - - w-3)10g(i - w-3) + ~ 3 1 +  
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where it is to be understood that the terms - (l /n) and 3/(4n(n- 1)) are 
to be included only for n 3 1 and for n 2 2, respectively. Equation 
(3.1 1) displays explicitly the logarithmic singularity of x (which corresponds 
to an exponential decay of the excess velocity in the duct), and the new series 
converges at w = 1 like 2 Equation (3.10 b) can be put into a similar 
form. 

It remains to find the constant p, which determines the scale of the 
far-field solution x1 : to this end we consider the flow at E (w ,  ZI + CO). 

A suitable series for x2,  as v--f CO, is obtained by expanding f ( X )  in 
ascending powers of its argument : 

2'3 8d3 X2+ ... dh. (3.12) -(:) 5 . 7 . 1 1 . ~  1 
Applying the condition 

which follows from the requirement of finite drag, and using (3.3 a) for xl, 
we obtain 

x2+x1 O ( X d  for v--f CO, 

(3.13) 

The asymptotic value of the complete soIution near the edge E is now 
given by the second term of (3.12), and may be written 

(3.14) 
, .  

This is an elementary function which can be found from equations 
(3.3 b) to (3.3 d). 

A more revealing (but less rigorous) method of evaluating p is the 
following. The condition at the stagnation point S may be written 

x = 0 at w = 8--2/3r1/3, = 0. 

Since w is large, the leading term of an asymptotic series for x2(w, 0) suffices, 
and this is given by the first term of (3.10a). Thus we require 

In  other words, as w +  m on v = 0, x should --f 0 as rapidly as possible, 
in order that the stagnation point of the exact hodograph be simulated as 
closely as possible. This requirement leads to the same value of p as before. 

4. THE FAR FIELD AND THE EDGE FIELD IN THE SUPERSONIC REGION 

The far-field potential x1 and the edge-field potential xE are both 
similarity solutions up to the limiting Mach wave. Barish & Guderley 
(1953) have demonstrated that when the initial solution is a similarity one, 
the flow continues analytically to the shock wave, which is itself a similarity 
curve, and that the solution behind the shock, while a different function, 
has the same similarity as that before the shock. However, Barish & 
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Guderley, who studied plane and axi-symmetric flows simultaneously, 
used a non-linear differential equation associated with the flow in t.he 
physical plane, and had to integrate this equation numerically to obtain 
their results. 

In  this paper we prefer to work in the hodograph plane, where our 
asymptotic solutions are elementary functions, both before and after the 
shock. The only numerical work required will be to find the roots of 
certain algebraic equations, which provide the constants in the solutions. 

I n  place of cc we introduce the variable 

which increases from 0 to T as v decreases from 5 to - i. The upstream 
solutions are both of form 

] (4.1) 
x = u-"fn(f), (n = pm), 

x = u-"-lR,f,(f), y = ~ - ~ - " ~ k , g ~ ( f ) ,  
and the solutions downstream of the shock will be written 

where 

f b  and gb are determined by the similarity index n, and by the boundary 
condition y = 0 on r )  = 0 :  they are, in fact, hypergeometric functions 
which again reduce to  elementary form. 

X = U-"-'kbjb(r)), y = ~ - ~ - ~ / ~ k  bg6(?7)7 (4.2) 
r)  = f - '  2 T. 

For She far field, by (3.3 d) : - 
n = l ,  k , = -  2 d 3  

g&) = sin3f ? 

5n ' 
2 sin &f 

- sin $f + 2 sin gf 
f a ( f >  = - cos fg,(S), 

2 cos 6.1 
f b ( 7 7 )  = + sin 77 g, (77 ), 

sin $7 + 2 sin $77 
gb(q) = c0s3?1 , 

and for the edge field, by (3.14): 

n = 4, k, = d 3  
5 . 7 . 1 1 . ~ '  
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Far field 
Edge field 

Let suffices ( )1 and ( )2 denote, for the moment, conditions immediately 
before and after the shock, let u2/ul = u, and let k,/ku = K .  The  following 
conditions apply. 

(i) n: and y must be continuous across the shock: 

n U 112 K C 

1 0.345 154.0" 27.2" 1.124 0.616 
4 0.735 126.7" 21.2" 1.004 1.430 

(4.5 a, b)  

(ii) The jump in (u, n) must be along the transonic shock polar: 

1.e. 
2 ( - 0312 sin V2 - cos El) - (1 - +) 1 + u 112 = 0. 
3 

(iii) The  shock slope must be normal to the vectorial velocity jump: 

i.e. 

These are four, rather than five, independent equations, since (4.5 a) and 
(4.5 b)  combine to 

and so do (4.7a) and (4.7b). The  unknowns are El, q2, u, and K ;  and 
the solution of these equations is not difficult. From (4.7) one can 
tabulate or plot fl and 772 as functions of u. The  left-hand side of (4.6) 
is then a known function of u, and one seeks its zero. There is only one 
such zero within the physically possible range of the variables. The  results 
of this calculation are shown in the following table: here c is the constant 
in the equation of the shock wave y = C X ( ~ ~ + ~ ) ~ ( ~ ~ ~ + ~ ) .  

5 .  THE PRESSURE DISTRIBUTION ALONG THE OUTER WALL 

The  edge field and the far field are now completely determined, but 
the flow in the intermediate region is known only up to the shock, whose 
position is also not fully known. Strictly, the solution should be completed 
by means of the numerical method of characteristics, but in the present case 
the following empirical procedure was though to be sufficient. 
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There are two lines u > 0, v = 0 in the problem: the first lies between 
the limiting Mach wave and the shock, and on the first sheet of the hodograph 
plane ; the second is the outer wall of the intake and lies on the second sheet 
of the hodograph. The  first of these lines would probably be used as a 
starting point of the characteristics computation (cf. Guderley 1954). 
Let the values of x on these lines be denoted by xu(u,O) and xb(u,O), 
respectively. Both these functions are monotonic decreasing and might 
be expected to be qualitatively similar, since both represent a transition 
from the edge field to the far field. Now the foregoing results show that 

~- 

(5.1) I xb(u7 O )  - 2.248[1+ 0(u2 ) ]  for u+O, 

xb(u' 

xu(u, 0) 

m- 
and 

- 2.008[1+ O ( U - ~ ) ]  for u+ co. 

Accordingly it has been assumed here that 

x,(u,O) is easily calculated by the method already used for x(w,O).  
We have 

1 1 C + i "  cos 7rq + cos $7 
427ri e - i w  cos 7rq - cos +7r 

- - --/ u3Qi2-1i2 sec +-q X 

r ( 4 q -  + ) r ( i q +  ;) 
r(Bq+ + ) r ( $ q +  g)  dq, ( -  1 < c < +), 

1 "  
27r 

1 "  
37r 

= - - 2 a,( - ~ ) - 3 n - 2 ,  (u 2 11, 

(u < l ) ,  -- 
(5.3 I 

- z: (b,  + *CTL ZL + d,, ."( - u)372, 

where the coefficients are given in (3.10). These are alternating series, 
which converge at u = 1, but the convergence is improved by introducing 
terms in log(1 + 2 r 3 )  and log( 1 + u3),  as before. 

6. THE DRAG 

I n  view of the singularity at the edge E, which makes our approximate 
solution locally invalid, the intake drag (as defined in $1)  must be calculated 
from the momentum flux across some suitable curve, such as BGO, in 
figure 3. (In this figure, 0,, O,, I,, I2 represent points which are actually 
at infinity.) The  general drag integral of transonic theory is derived in 
Appendix I11 ; in the present case it becomes 

(2uvdx+ (v2+#u3-$[uI3)dy) ,  (6.1) 
1 &D 
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where [u] denotes the velocity jump across the shock wave (downstream 
value minus upstream value), and is a function of y only. The  term in [.I3 
accounts for the change in entropy and stagnation pressure across the shock, 
and is to be included only at points on BGO, behind the shock. T h e  
integral (6.1) is invariant under the changes of the path (provided that 
the termini remain at some point on the outer intake wall and at  O,), and 
the path may therefore be deformed to BE,E,I,I,O,O,. Then the 
integral around the small contour E I E z  gives the edge force, and that 
along 1112 gives the pre-entry drag: the other parts of the path make 
no contribution. 

Figure 3. 

Now near E the flow is represented asymptotically by a similarity 
solution, x = u-”fn(cz), and the corresponding drag integral is 

1 (6.2) DEIEt - O(u-n+3/2) O(y(2n--3)Vn+3) 

(details of this expression are given in Appendix 111). 
It follows that (i) the far-field solution x1 must be removed in the 

neighbourhood of the edge ( x , y - 0 ;  u, v+  co) because it would lead to 
an infinite force, and (ii) the true solution yields zero edge force. For x1 is 
the similarity solution with n = 1, so that the corresponding edge-force 
integra1”would + co as u+ co. (Since the geometry behind the limiting 
Mach wave may be varied without affecting the flow upstream, there is 
no general possibility of a cancellation between terms tending to infinity 
in the edge-force integral.) On the other hand the true edge flow is 
represented by the similarity solution with n = 4, so that the true edge- 
force integral + O  as u+ co. 

On Ill, this 
reduces to 

The  pre-entry drag is easily calculated from (6.1). 

(6.3 1 . $ ~ 3  dy = 2. 
1 - 
S2CDpre = - 0  \-I 3 

It remains to find the cowl drag of the slender-wedge intakes discussed 
in 0 1. Let the slope of the wedge face be €8, and let its length be ZL(61’)1/3, 
where 1 is O(1). For e -0  the pressure changes induced by the wedge 
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are O ( E ~ ) ,  and their contribution to the drag is therefore small compared 
with that of the flat-plate pressures. Hence, by (6.1) 

where u refers to values on the outside wall of the flat-plate intake. 
Numerical values are given in the next section. 

7. RESULTS 
Pressure distributions along the centre-line, 3' = - 1, along the inner 

wall y = 0- ,  and along the outer wall, y = 0 + ,  are shown in figure 4. 

-3 - 2  - I  I 2 3 4 

X 
''7 mr) 

INNER WALL 1'0- 

Figure 4. 

'This picture is supplemented by the following asymptotic approximations 
(which, for the external wall, are based on (5.1) rather than on the 
approximation (5.2)) 

u(x,  - 1) - -0.664( -x)-l12 for x+ - 00, 
U ( X ,  0 + ) - 0 * 7 0 4 ~ - ~ ' ~  for x+  co, 
U ( X ,  0 + ) - 0 * 7 1 3 ~ - ~ ' ~  for x+O, 
u ( x , O - )  - -0*712~-' '~ for x+O, 

u(x,O-) - -1-0*147e-rz 
u(x, - 1) N - 1 +0*147e-"" 

for x+  co, 
€or x+  co. 

It is evident that the external decay of disturbances before and after the 
inlet station is slow (although it must be remembered that x is a ' stretched ' 
coordinate), and that the edge singularity is very weak, It is also striking 
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I 
-- 

1 
C D C O W 1  

that over 907/, of the compression of the entering fluid takes place ahead 
of the inlet station, and that the decay of disturbances within the duct 
is extremely rapid, so that one-dimensional theory provides a very good 
approximation to the flow within the duct. 

As a basis for comparison, we quote some results for the present intake 
in an incompressible stream. In this case the reduced variables are given by 

1 3 6 

- 0.9 - 1.5 - 2.0 

, x = L x ,  Y = Ly, u = 6u(x,y), T." = 8v(x,y),  

and the small-disturbance solution is 
u-iv x+iy = - -+log 

rr u-1v u - i v + l  

for x - f  - x, 
for x - f  00, 

for x+ 0, 
for x+ co, 
for x+ co. 

l (  
so that 

U ( X ,  - 1 )  0 . 3 1 8 ~ - '  
U ( X ,  0 + ) - 0-318x-l 
U ( X ,  0 2 ) N t- 0*399~-'/' 
u(x,  0- )  N - 1 -0*368e-" 
u(x, - 1 )  N - 1 +0*368e-"2 

Within the framework of reduced coordinates, the external disturbances 
of the incompressible flow are therefore more concentrated near the 
inlet station than are those of the transonic flow: the extent to which 
this effect is reversed, when physical coordinates are used, depends upon 
the magnitude of 6. 

The pre-entry drag of the intake in transonic flow is 

The decrease in drag with increasing frontal area is therefore quite rapid, 
at least initially. 

I am indebted to Professor P. Germain and to Professor J. D. Cole 
for a number of most helpful discussions, and to Mrs A. Tingley for help 
with the numerical computations. This work was completed while I was 
on leave of absence at the Guggenheim Aeronautical Laboratory, California 
Institute of Technology, and was partly sponsored by the U.S. Air Force 
Office of Scientific Research, under Contract AF-18(600)-383.  
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APPENDIX I. ELEMENTARY SOLUTIONS OF THE TRICOMI EQUATION 

By separation of variables one finds the following elementary solutions 
of equation (2.5): 

and 

Figure 5.  

Alternatively, if one seeks similarity solut,ms of form x = c-mJ (a) ,  
where a = vz/cz = 9v2,14u3, these turn out to be, in a neighbourhood of 
the characteristic v = { (see figure S), 

and 

( -mF(Tm,  1 - m +  2 3  - ; m +  5 6 ’  - ‘ 1 -a), 
1 1  I (1.2) 

with corresponding hypergeometric functions applying elsewhere in the 
field. The  singularities of the hypergeometric equation, a = 0, co, 1, 
correspond, respectively, to the line v = 0, to the sonic line, and to the 
important characteristics a = 1.  As Guderley (1948) has demonstrated, 
one of these two characteristics is generally the limiting Mach wave, which 
divides both the physical and the hodograph fields into (i) the subsonic 
region, together with an initial part of the supersonic region which influences 
the subsonic flow, and (ii) that part of the supersonic region which does 
not influence the upstream field. 
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Most analytic solutions of problems in transonic flow have been obtained 
by superposition of the solutions (1.1) and (I.Z), but the relatively simple 
relation between these forms does not appear to have been emphasized 
in the literature. With a view to the present application, we discuss this 
relation here. Consider 

(1.3) 
dh x = 5'13 im e-"'k"gh)Ki13(h~) +h(h)11/3(hC)I 9 

0 

where g and h are assumed to be algebraic rather than exponential. 
for A+ CQ 

Since 

the first part of (1.3) converges for 9 ( v + < )  > 0 (that is in the regions I, 
11,111, IV of the hodograph plane, figure S), whereas the second converges 
for 9 ( v  - 5 )  > 0 (that is, only in I and 11). Thus we expect the K,,3-solution 
to be associated with only the first solution in (I.Z), which is analytic on 
T = 5. In  fact by standard integrals, and by properties of the hypergeometric 
functions (Erdklyi 1954, 1953), one finds that 

5113 Jm e-Avhm-2/3K11,(h5) dh 
0 

(m > 0). (1.4) 
A similar result for the IlI3-so1ution involves both the hypergeometric 
functions in (1.2). 

To obtain a further relation we introduce the Mellin transform. The 
definition integral of this transform is 

6 ( p )  = jm 5p-1+(5) d5, ( A  < Bp < B), 
0 

which we also write $(p) + $([) ; the inversion integral is 

and the composition product is 

W ( P  -t 4 8 2 <  - P  + b )  + 5" 41(~5)$2(W dh (1.7) 
0 

(provided that & @ + a )  and & ( - p + b )  have a common strip of conver- 
gence). Now let 

Then z ' (p+ +,a)  is given by (1.4), with m = p ,  v = <all2, 5 = 1. Now 
if in (1.3) we set h(h) = 0, and take the Mellin transform of both sides, 
we have, by (1.7), -, 

Kl/,(h) = G(h, a).  e-A,1/2 

f ( P ,  a )  = G(P + Q, .)g( - P  - 91, 
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provided that f ( q )  converges somewhere in B'q < - 9 .  Hence 
dA x(c>  .) = J' e-A"K1/3(Ac)g(A) 

0 

F ( i p ,  - p +  1 1  - ; p +  5 - l - ~ ) f ( - p - + )  dg, (1.S) 
2 3  6 '  

and we have transformed a superposition of the solutions (1.1) into a super- 
position of the solutions (1.2), the weighting function of the first form 
being replaced by its Mellin transform in the second. The complex integral 
can often be expressed as a series by contour integration. 

APPENDIX 11. UNIQUENESS OF y2 
In this appendix the problem for y2 is transformed into a problem of 

the standard Tricomi type by means of a certain inversion which leaves 
the equation invariant (see, for example, Germain & Bader (1952)). The 
( x ( c ) ,  v)-plane is mapped on to an ( ~ ( y ) ,  P)-plane by the transformation 

Y ( Y ,  t )  = P1/317(P, 7). 

The line v = 0, x real, maps on to the semi-circle p = T ,  or cc2 + ( P  - Q ) 2  = 4, 
0 < 7 < 1 ; the quarter-circle Y+ co, 0 < t 6 1, maps on top+O, 0 < T 6 1 ; 
the characteristic at infinity v + 5 = k, k --f co, maps on to P - y = 0, y < 4 ; 
and the characteristic v - 5 = 0 maps on to ,8 + y = 1, y < Q. The problem 
for y2, namely 

( i i ) y =  -1 on v = O , $ > z > O ,  
= O  on v = O , x > # ,  

(iii) y N O(r513)  forx real, Y-+ co, 
N O ( v ~ - ~ l ~ )  for 5: real, v+ co, 

then becomes 

. t / 1 3 i 7 < 1 ,  3 (ii) 17 = - p - l / 3  on p 3 7, 

3 
y'13 ' = O  on p = r ,  O < T < - -  

(iii) 7 = 0 on p = 0, y < Q. 
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The uniqueness of such a problem, in which data are prescribed on an arc 
in the elliptic half-plane and on an adjacent characteristic in the hyperbolic 
half-plane, was established by Tricomi (1923). 

APPENDIX 111. THE DRAG INTEGRAL OF TRANSONIC THEORY 

In  this appendix we first develop the general drag integral of transonic 
theory: this involves no more labour than the derivation of the particular 
form which is of interest here. Let + be the perturbation velocity potential 
of a three-dimensional transonic flow, such that the total velocity at any 
point is U,( 1 + V+). The governing differential equation is 

(1 - J,f; - W x ) + x x  + +YP + 4zz = 0. (111.1) 

Consider the drag on a portion A of some solid boundary, and let S be 
a surface in the fluid such that S + A form a closed surface. Then by the 
equations of mass and momentum 

(III.2a) 

where N is the normal outward from S+A, N(**, is its X-component, 
and P and p denote the pressure and density. If P- Po is bounded on A, 
(III.2a) and (III.2b) are wholly equivalent, but if there is a singularity 
on A, an approximate solution will not be physically valid in its neighbour- 
hood. We assume, however, that the solution is valid in the field away 
from the singularity: then the drag is defined by (III.2b). 

By expansion of the usual equations of inviscid, homenergic flow, we 
find that 

p- - -  Po - - 2+x - (V+)2 + fig;+% + nl;c),( VC$)2- 4 (2 --y)M;&+ 
;Po u: 

+ Q ( Y  + 1)M; 2 [+=I3 + O((V#)4}, (111.3 a) 

= 1 -M~q5x-~nlo2(V~)2+9(2-y) f i l ; :~~fO((V~)3} .  (III.3b) 

Here [#Lr] denotes the velocity jump across a shock (downstream value 
minus upstream value) and the term in accounts for the change 
in stagnation pressure across any shock waves upstream of the point in 
question*. T o  our order of accuracy [4,] is a function of I’ and Z only. 
If these expressions are now inserted in the drag integral (111.2 b), there 
results 

Po 

* The need for this term was brought to my attention by Professor Germain and 
Professor Cole. 
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This is the drag integral of second-order compressible flow theory. 
transonic flow we may make the further approximations 

For 

M; 4% M i  &, 
(N * V+>& W,,&, 

to  obtain 

It is readily verified, by means of Gauss’s theorem, the differential equation 
(III.l), and the conservation equations for a shock wave, that this drag 
integral is invariant under changes of the surface S (provided that S+A 
remains a closed surface and that there are no singularities between different 
surfaces S). 

For plane flows with M,, = 1, (111.5) reduces to 

where the integral is taken counter-clockwise in the physical plane, and 
where the reduced variables of (2.2) have been introduced. 

Next, following Germain (1957), we consider the form of the drag 
integral when the flow may be represented on C by a similarity solution 
of the form considered in (1.2) ; that is, when 

so that h is some solution of the hypergeometric equation 

a( 1 - a)h” + [& - (2 + +n)a]h‘ -In( 9 1 + n)h = 0. 
Equation (111.6) now becomes 

x = u-%(a), (n= #m), 

(111.7) 

( u - ” + ~ / ~ [ (  (9. + Z)a3j2 - (2n + 3 ) ~ ~ / ~ ) h ‘  + Q(n2 + n)a1/2h] du + 

where C’ is the image of C in the hodograph plane. Now the invariance 
property of the drag integral ensures that the integrand in (111.8) is an 
exact differential, and this may also be verified by means of (111.7). Hence 
it follows from the du-term that 

- 1 Ic 2 [.I3 dy. (111.9) 

In general C and C‘ cross shock waves, and the integrated term in (111.9) 
is then only piecewise continuous: its discontinuities must be taken into 
account when (111.9) is evaluated. 
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Germain (1957) has pointed out that if Cis a large contour in the physical 
plane with termini on y = 0, 2’ = 0, the appropriate solution is that with 
n = 1 ,  so that the integrated term in (111.9) vanishes in the limit. The  
drag is then seen to be entirely due to the entropy gain across shock waves. 

NOTE ADDED IN PROOF 

It is clear from (111.8) and (111.9) that an edge force is possible, in 
Such a flow has been studied transonic flow with M,, = 1, only if n = $. 

by Nonweiler (1958), who finds that the solution 

corresponds to  the flow past the body Y cc X2I5, the velocity on this body 
being sonic for X > 0. Nonweiler calculates the edge force by integrating 
surface pressure on the related bodies Y cc X ”  and letting Y + Q .  The  same 
result is readily obtained from (111.8), in which the du-term and the shock 
term vanish. This  shows that the only assumption implicit in Nonweiler’s 
result is that the velocity in the field away from the singularity is given correctly 
to the lowest order. 

x = const. ~ - “ ~ ( l  - c c ) - ~ / ~  (w 3 0) 
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